
JudgeD: a Probabilistic Datalog with Dependencies

Brend Wanders and Maurice van Keulen and Jan Flokstra
Department of Electrical Engineering, Math and Computer Science

University of Twente
{b.wanders, m.vankeulen, jan.flokstra}@utwente.nl

Abstract
We present JudgeD, a probabilistic datalog. A JudgeD
program defines a distribution over a set of traditional
datalog programs by attaching logical sentences to
clauses to implicitly specify traditional data programs.
Through the logical sentences, JudgeD provides a novel
method for the expression of complex dependencies be-
tween both rules and facts. JudgeD is implemented as
a proof-of-concept in the language Python. The imple-
mentation allows connection to external data sources,
and features both a Monte Carlo probability approxi-
mation as well as an exact solver supported by BDDs.
Several directions for future work are discussed and the
implementation is released under the MIT license.

1 Introduction
Several probabilistic logics have been developed over the
past three decades. Prominent examples include Proba-
bilistic Horn Abduction [Poole, 1993]; PRISM [Sato and
Kameya, 2001]; Stochastic Logic Programs [Muggleton,
1996]; Markov Logic Networks [Richardson and Domin-
gos, 2006]; constraint logic programming for probabilistic
knowledge, know as CLP(BN), [Costa et al., 2002]; prob-
abilistic Datalog, known as pD, [Fuhr, 2000]; and ProbLog
[De Raedt, Kimmig, and Toivonen, 2007]. In these logics
probabilities can be attached to logical formulas, under the
imposition of various constraints. In SLPs clauses defining
the same predicate are assumed to be mutually exclusive;
PRISM and PHA only allow probabilities on factual data
and under constraints that effectively enforce mutual exclu-
sivity.

During the same period, several relational probabilis-
tic databases have been developed. Relational probabilis-
tic database systems that, to a certain degree, have out-
grown the laboratory bench include: MayBMS [Koch, 2009;
Antova, Koch, and Olteanu, 2009], Trio [Widom, 2004], and
MCDB [Jampani et al., 2008] as a prominent example of a
Monte Carlo approach. MayBMS and Trio focus on tuple-
level uncertainty, that is, probabilities are attached to tuples,
and mutually exclusive sets of tuples are defined. MCDB
focuses on attribute-level uncertainty where a probabilistic
distribution captures the possible values for the attribute.

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

As with the probabilistic logics, certain constraints are im-
posed. In Trio probabilities are attached to tuples in exclu-
sive sets, that is, a set of mutually exclusive tuples, of which
at most one is selected. MCDB supports expressing correla-
tion between attributes through correlated sample functions.
MayBMS allows the expression of mutual exclusivity and
mutual dependency. In all cases, probabilities can only be
attached to factual data.

In this paper we present JudgeD, a probabilistic datalog
in which probabilities can be attached to both factual data
and rules. Furthermore, complex dependencies can be ex-
pressed between clauses. JudgeD has been motivated by
our ongoing work on maritime evidence combination, where
we want to reason with uncertain facts and rules expressing
heuristics. We present a proof-of-concept implementation of
both a Monte Carlo based answer probability approximation
and an exact solver supported by binary decision diagrams
(BDDs).

The key contributions of this paper are:

• The expression of dependencies between arbitrary
clauses, both facts and rules (e.g., mutual exclusiv-
ity, independence, mutual dependence, implication and
more complex dependency relations),

• The proof-of-concept implementation of both a Monte
Carlo based approximation as well as an exact solver.

In the next section we will introduce the motivating example
for JudgeD. Sections 3 and 4 summarize the formalism on
which we base JudgeD and present the syntax, respectively.
Section 5 discusses the implementation of the system. Sec-
tion 6 discusses JudgeD in relation to other work, section 7
presents avenues for future work, and we conclude in sec-
tion 8.

2 Example: Maritime Evidence Combination
A motivating example for the development of JudgeD is its
use as reasoning system for the combination of uncertain ev-
idence about maritime data. The case described in [Habib et
al., 2015] has as ultimate goal the automatic determination
of the chance that an observed vessel is engaged in smug-
gling based on a observations about these vessels. A sim-
plified example of such an observation would be the follow-
ing: seen("ZANDER", "AMSTERDAM"). The seen/2

predicate expresses that a vessel, ZANDER, is seen in a port,
AMSTERDAM.

Reasoning about the observations is supported by a
knowledge base of vessels and their attributes. The knowl-
edge base consists of factual knowledge about the ves-
sels expressed through vessel/1, vessel name/2 and
vessel imo/2 predicates. A sample fishing vessel called
ZANDER and identified with IMO number 7712767 (the In-
ternational Maritime Organization number is a unique iden-
tifier for the vessel) is described as:
vessel(v0).
vessel_name(v0, "ZANDER").
vessel_imo(v0, 7712767).
vessel_type(v0, stern_trawler).

Additional attributes in the knowledge base are described as
additional predicates matching the vessel ???/2 pattern.

The goal is to answer the query smuggling(V)? with
a set of vessels, each associated with the probability that,
given the observations, they are engaged in smuggling.

Uncertain facts Facts, both observations and vessel infor-
mation in the knowledge base, can be uncertain. An ex-
ample of an uncertain observation is the interpretation of
a verbally reported observation: uncertainty about the ob-
served vessel is easily possible due to a low-quality ra-
dio communication. The two interpretations of the spo-
ken report are: seen("ZANDER", "AMSTERDAM") and
seen("XANDER", "AMSTERDAM"). These two obser-
vations are mutually exclusive with each other.

Another example would be uncertainty about two obser-
vations. For example, if a harbourmaster receives two re-
ports from different sources about a ship sighted of the coast,
there can be doubt about whether these are two ships, or if
this is one vessel sighted twice. When he receives a radioed
report about a sighting of the vessel XANDER and at the same
time gets a report about the just sighted ZANDER, there are
three different ways to report the situation:
report(r1, "XANDER").

He makes a single report stating that the vessel XANDERwas
sighted, assuming that the second sighting was actually the
same ship, but with an unclearly pronounced name.
report(r1, "ZANDER").

He makes a single report stating that the ZANDER was
sighted, confident that the other report was simply a report
for the same ship.
report(r1, "XANDER").
report(r2, "ZANDER").

Alternatively, the harbourmaster can make two reports. If
both names were heard correctly, there are two ships of the
coast. In this situation, there is uncertainty about what facts
are true.

Uncertain rules Probabilities attached to rules can be in-
terpreted as a form of heuristic. By stating that a rule
does not always hold, any answers derived through that
rule will take the probability that the rule holds into ac-
count. For example, if domain expertise holds that any ves-
sel caught smuggling is likely to be engaged in smuggling

again, this can be expressed by the rule: smuggling(V)
:- caught smuggling(V). By attaching a probability
to this rule, it becomes a heuristic for determining if a vessel
is engaged in smuggling.

Dependencies between rules are necessary to express such
heuristics with disjunctions in them: if there is a 0.45 chance
that ship is smuggling if it is “blue or has an unreadable
name” — a purely fictitious heuristic — this is expressed
in datalog through two separate rules smuggling(V)
:- vessel blue(V) and smuggling(V) :-
vessel name unreadable(V), and these two rules
need to be in or out together.

3 Formal Basis
The semantics of JudgeD programs are similar to those of
ProbLog, in that JudgeD programs specify multiple tradi-
tional datalog programs. In this section we try to give an in-
tuitive understanding of JudgeD semantics, a more in-depth
discussion of the formal underpinnings of JudgeD can be
found in [Wanders and van Keulen, 2015].

A JudgeD program J specifies a multitude of traditional
datalog programs, albeit in a more compact representation.
Let WJ be the set of all traditional datalog programs spec-
ified by the JudgeD program. Each partitioning ωn divides
W into n covering disjoint partitions. Each program is la-
beled with a label ω=v, with ω the partitioning, and v the
partition into which the program is placed. This way, every
program inW has a set of associated labels, with exactly one
label from each partitioning. In other words, labels from the
same partitioning are mutually exclusive, and exactly one of
them is true for any given datalog program. For example,
given partitionings x2 and y2 we can construct all datalog
programs inW by enumerating: {x=1, y=1}, {x=1, y=2},
{x=2, y=1}, and {x=2, y=2}.

A JudgeD program consists of a set of clauses. In JudgeD
every clause ci has an attached propositional sentence ϕi

called a descriptive sentence. We use the shorthand 〈ci, ϕi〉
to denote that sentence ϕi is attached to clause ci. The de-
scriptive sentence uses partitioning labels, of the form ω=v,
as atoms to A describe the set of traditional datalog pro-
grams for which the datalog clause holds: the clause is part
of every datalog program for which ϕi evaluates to true
given that the labels attached to the datalog program are the
only labels that are true. For example, the clause 〈A, x=2〉
is fully defined as follows:

Ah x=2← A1, A2, . . . , Ai

This clause has the normal semantics that Ah holds if
A1 through Ai hold, and only in those datalog programs
for which the descriptive sentence x=2 holds. Using the
previous example partitionings, this clause is part of two
datalog programs specified with the following sets labels:
{x=2, y=1} and {x=2, y=2}.

Dependencies between clauses The dependencies be-
tween clauses can be expressed with descriptive sentences
logically combining different labels. Mutual dependency
can be expressed by using the same sentence for the clauses.

For example 〈a, ϕ〉 and 〈b, ϕ〉 describe the situation where
the clauses a and b always hold in the same datalog pro-
grams. Implication can be expressed by containment. For
example 〈a, ϕ〉 and 〈b, ϕ ∧ ψ〉 describes the situation that
whenever a is in a datalog program, then b is too. Mu-
tual exclusivity can be expressed through mutually exclu-
sive sentences. For example, 〈a, ϕ〉 and 〈b, ψ〉 are mutually
exclusive if ϕ ∧ ψ ≡ false .

Probability calculation One can attach a probability
P(ω=v) to each partition v of a partitioning ωn provided
that

∑n
v=1 P(ω=v) = 1. As is known from the U-relations

model [Antova et al., 2008] and variations thereof such as
[van Keulen, 2012], calculating probabilities of possible
worlds or the existence of an assertion among the worlds,
can make use of certain properties that also apply here. For
example P(ω1=v1 ∧ ω2=v2) = P(ω1=v1) × P(ω2=v2)
and P(ω1=v1 ∨ ω2=v2) = P(ω1=v1) + P(ω2=v2) iff
ω1 6= ω2.

Given a JudgeD program J and a query q, the naive ap-
proach to calculate the probability of the query answer is
to enumerate all possible datalog programs P ∈ WJ , and
sum the probabilities of each program P for which there is
a proof for q. This quickly becomes infeasible for any non-
trivial amount of uncertainty.

4 Probabilistic Datalog
The syntax of JudgeD program closely resembles traditional
datalog, with the addition of the descriptive sentences. Addi-
tionally, the probabilities attached to the labels are included
in the syntax. An example of a simple coin-flip would be:
heads(c1) [x=1].
tails(c1) [x=2].
@P(x=1) = 0.5. @P(x=2) = 0.5.

The first two lines establish simple facts and attach sentences
to make them mutually exclusive. The third line contain an-
notations that attach probabilities to the labels to allow the
calculation of answer probabilities. When presented with
the query heads(C)? the answer heads(c1) has a prob-
ability of 0.5.

To show how dependencies can be expressed in practice
recall the example of uncertain facts on page 2: the exam-
ple describes two sightings of vessels called XANDER and
ZANDER, with doubt about whether they are the same ves-
sel. The harbourmaster has three options: report one vessel
named XANDER (n=1), report one vessel named ZANDER
(n=2), or report them both as separate vessels (s=2). In
JudgeD this can be expressed as follows:
report(r1, "XANDER") [s=1 and n=1].
report(r1, "ZANDER") [(s=1 and n=2) or s=2].
report(r2, "XANDER") [s=2].

By creating a partitioning s2 we effectively describe a choice
between datalog programs: one where the two reports refer
to the same vessel, and another where the two reports refer to
different vessel. The choice of selecting the name XANDER
or ZANDER, represented by the partitioning n2, is depen-
dent upon s=1, as expressed by the conjunction. Complex
dependencies can be expressed by combining the and, or
and not operations.

5 Implementation
The proof-of-concept implementation of JudgeD is based on
SLG resolution for negative Prolog as described in [Chen,
Swift, and Warren, 1995]. The focus of the implementa-
tion is not on raw performance, but on ease of prototyping,
as such the system is implemented in Python1 to allow for
quick prototyping of new approaches.

The implementation is structured such that a basic imple-
mentation of Datalog with negation was created first. The
basic implementation also allows the introduction of native
predicates, i.e., predicates that are implemented in Python.
Native predicates can be used to pull data from external data
sources, such as a relational database or a graph database,
into the query answering process.

The basic implementation was then used as a basis for
two methods of evaluation: a Monte Carlo approximation,
and an exact solver.

Monte Carlo Approximation

Monte Carlo approximation for a query q boils down to re-
peated weighted sampling of a traditional datalog program
Pi from all implicitly specified datalog programs WJ in the
JudgeD program J , and evaluating q for each sampled Pi.
Sample weights are calculated by simple multiplication of
the probabilities attached to the labels associated with P .

Instead of determining the weights of each datalog pro-
gram, a lazy-evaluation scheme is used to construct a set
of sampled labels only from those partitionings that are en-
countered during the search for a proof. This scheme allows
the evaluation of q over knowledge bases with enormous
amounts of uncertainty, as long as that uncertainty is ‘local’.
That is, if the uncertainty is expressed as large numbers of
partitionings, each with a moderate number of labels.

The implementation features a rudimentary stopping cri-
terion by determining the root mean square error of the sam-
ples observed up till now, and if the error moves below a
configurable threshold the approximation is terminated.

The Monte Carlo approximation allows the use of the full
expressiveness of negative Datalog, with the lazy-evaluation
scheme allowing the application to knowledge bases with
large amounts of uncertainty. Furthermore, because of the
non-intrusive nature of the scheme, it can easily be applied
to other types of solvers. A disadvantage of the Monte Carlo
solver is that it will not provide the logical sentence that de-
scribes for which datalog programs the proof holds. It will
only provide the probability of the answer.

Exact Solver

In contrast with the Monte Carlo solver, the Exact solver
determines the exact sentence ϕa describing in which data-
log programs the proof for the answer a was found. This is
done based on the knowledge that for any answer the reso-
lution proof can be restricted to a linear sequence of clauses
c1, c2, . . . , ci, with attached sentences ϕ1, ϕ2, . . . , ϕi. The

1https://www.python.org

https://www.python.org

sentence for the answer follows from the needed clauses as:

ϕa =

i∧
n=1

ϕn

If the sentence ϕa is consistent, then answer a can be proven
in all datalog programs for which the sentence holds. An
inconsistent sentence shows that there are no datalog pro-
grams contained within the JudgeD program for which there
is a valid proof.

Efficient construction of this sentence is done by con-
structing partial sentences during SLG resolution, i.e., unifi-
cation, of two clauses G and C. The partial sentence ϕA for
the resolvent A is equal to the conjunction of the sentences
associated with G and C: ϕA = ϕG ∧ ϕC . If this sentence
is inconsistent this means that G and C are not unifiable be-
cause there is no datalog program for which this proof will
hold.

If a new fact is discovered during the search it is only
necessary to expand on it if it is not subsumed by an already
discovered fact. While datalog has no functions, and thus
no functional subsumption, the introduction of descriptive
sentences creates a different kind of subsumption. A new
fact 〈f, ϕ〉 is subsumed by an already known fact 〈a, ψ〉 if
ϕ ∧ ψ ≡ ψ. If this is the case, the new fact does not add
new knowledge to the already expanded knowledge base,
because any proof that leads to the new fact comes from
already explored datalog programs.

The efficient detection of sentence subsumption is done
through the use of Binary Decision Diagrams [Bryant,
1992]. A binary decision diagram is a graphical representa-
tion of a boolean function over a number of variables. Given
a complete ordering over the variables a Reduced Ordered
Binary Decision Diagram, more commonly known simply
as a BDD, provides a canonical representation of the boolean
function. A BDD can be constructed by starting with a bi-
nary decision tree in which all non-leaf nodes represent vari-
ables and all leaf nodes represent either 1 or 0. Non-leaf
nodes have a ‘high’ and a ‘low’ child. Each path from the
root to a leaf represents a full assignment of truth values to
each variable, with variables encountered in the order deter-
mine by the full ordering. A BDD can be constructed from
this tree by merging isomorphic subgraphs and reducing re-
dundant nodes until no further reduction is possible. An ex-
ample of a BDD for the function f = (a∧ b)∨ c can be seen
in figure 1.

The current exact implementation is restricted to positive
datalog, and does not yet calculate probabilities. See sec-
tion 7 for a discussion on extension to negative datalog, and
on two promising directions for probability calculation.

6 Related Work
The semantics of JudgeD can be seen as an extension to the
semantics of ProbLog. In ProbLog [De Raedt, Kimmig, and
Toivonen, 2007] each clause has an attached probability that
they are true. These probabilities are assumed to be inde-
pendent. We extend this semantic by decoupling the prob-
abilities from the clauses through the descriptive sentences,

0

c

a

b

1

Figure 1: Example of a BDD for the function f = (a∧b)∨c.
Solid edges are high, dotted edges are low.

allowing the expression of complex dependencies. Further-
more, where the ability to assign probabilities to rules has
to be exercised with caution in ProbLog — because, as De
Raedt et al. state “the truth of two clauses, or non-ground
facts, need not be independent, e.g. when one clause sub-
sumes the other one” — this is not a concern in JudgeD
where these clauses can be given multiple labels.

pD [Fuhr, 2000] also assumes independent probabilities,
and allows the definition of sets of disjoint events. In this
way it is possible to model arbitrary dependencies. This can
be done by providing the disjoint probabilities for all pos-
sible combinations of dependent events. In practice, the re-
quired enumeration of all possible combinations makes this
an infeasible solution.

The way labels are used in JudgeD is inspired in part by
the random variable assignments of MayBMS [Koch, 2009].
MayBMS constraints the assignment labels to facts (by
virtue of attaching them to tuples in a relational database)
and requires that only conjunctive combinations of labels
are used. MCDB [Jampani et al., 2008] uses a Monte
Carlo approach to allow query answering over a sampled
database, where they apply their concept of tuple-bundles to
speed up the process. JudgeD uses a conceptually similar
method through the lazy-evaluation scheme, which answers
the query by monotonically constricting the answer to the
set of datalog programs in which a proof can be found.

7 Future Work
Because JudgeD is a proof-of-concept implementation,
there are several areas for improvement and investigation.
Of specific interest is the computation and approximation of
probabilities.

JudgeD is a probabilistic datalog derived from the frame-
work described in [Wanders and van Keulen, 2015]. The
decoupling between descriptive sentence and datalog clause
closely adheres to this framework. However, with ProbLog’s
proven performance [Kimmig et al., 2008] on top of YAP-
Prolog, reducing JudgeD programs to Problog programs is a
promising and open topic of investigation.

Exact probability calculation for sentences in DNF is de-
scribed by [Koch and Olteanu, 2008]. They propose an al-
gorithm and heuristic to break down the DNF sentence into

independent subsentences, which allows computation of the
exact probability. Another venue of investigation of prob-
ability calculation is ProbLog’s approximation. [De Raedt,
Kimmig, and Toivonen, 2007] describes both a BDD-based
probability calculation for the exact probability and an ap-
proximation algorithm that can be applied during the com-
putation of the SLD tree. Since the currently used solver is
based on SLG [Chen, Swift, and Warren, 1995], which is a
successor of SLDNF, this direction seems to be valuable.

The current implementation of the exact solver does not
support negative datalog. Our work in the maritime evi-
dence combination case has impressed the need for negation
in real-life applications. Further investigation is needed to
apply the formalism described in [Wanders and van Keulen,
2015] to negative datalog to allow a principled implementa-
tion of the exact solver for SLG resolution to support nega-
tion.

A different direction is the extension of JudgeD to allow
for generalized probabilities. Currently, the modelling of
two coin flips requires the explicit declaration of a second
partitioning. For example, a single coin flip can be mod-
elled by: { 〈coin(c1), true〉 〈heads(C)← coin(C), x=1〉,
〈tails(C) ← coin(C), x=2〉 } with a single partitioning x2
describes how the coin c1 can go either heads or tails. Two
coin flips must be made explicit with the addition of a new
partitioning y2. The simple addition of coin(c2) to the pre-
vious scenario will result in x2 representing a ‘universal’
coin flip: either all coins land on heads, or all coins land
on tails. Extending the modelling of probabilities to allow
the specification of implicit partitionings, i.e., the specifica-
tion of “one partitioning per X for all answers of coin(X)”,
together with their probability mass functions may improve
the way JudgeD can be applied to certain problems.

JudgeD has the option to use knowledge from external
data sources, such as relational databases or graph databases,
through native predicates. At the moment of writing, na-
tive predicates must be deterministic To leverage the full
expressiveness of JudgeD, native predicates have to be ex-
tended to allow them to interface with probabilistic rela-
tional databases and other probabilistic data sources.

8 Conclusions
We present JudgeD, a proof-of-concept probabilistic data-
log implementation. JudgeD can connect to external data
sources through native predicates, and supports negative dat-
alog based on SLG resolution. We have presented a Monte
Carlo approximation for calculating answer probabilities,
and presented an exact solver that works for positive data-
log. The key contribution of JudgeD is the ability to express
dependencies between arbitrary clauses, including both facts
and rules in such dependencies.

There are several venues for future investigation, includ-
ing improved probability calculation algorithms inspired by
MayBMS and ProbLog, the use of external probabilistic data
sources, and the addition of generalized probabilities to ex-
press independent probabilities associated with repeated or
plural events.

JudgeD is released under the MIT license. It can be ob-
tained from: https://github.com/utdb/judged

References
[Antova et al., 2008] Antova, L.; Jansen, T.; Koch, C.; and

Olteanu, D. 2008. Fast and simple relational processing of
uncertain data. In Proc. of ICDE, 983–992.

[Antova, Koch, and Olteanu, 2009] Antova, L.; Koch, C.;
and Olteanu, D. 2009. 10(10

6) worlds and beyond: Effi-
cient representation and processing of incomplete informa-
tion. The VLDB Journal 18(5):1021–1040.

[Bryant, 1992] Bryant, R. E. 1992. Symbolic boolean ma-
nipulation with ordered binary-decision diagrams. ACM
Computing Surveys (CSUR) 24(3):293–318.

[Chen, Swift, and Warren, 1995] Chen, W.; Swift, T.; and
Warren, D. S. 1995. Efficient top-down computation of
queries under the well-founded semantics. The Journal of
logic programming 24(3):161–199.

[Costa et al., 2002] Costa, V. S.; Page, D.; Qazi, M.; and
Cussens, J. 2002. Clp (bn): Constraint logic programming
for probabilistic knowledge. In Proceedings of the Nine-
teenth conference on Uncertainty in Artificial Intelligence,
517–524. Morgan Kaufmann Publishers Inc.

[De Raedt, Kimmig, and Toivonen, 2007] De Raedt, L.;
Kimmig, A.; and Toivonen, H. 2007. Problog: A prob-
abilistic prolog and its application in link discovery. In
IJCAI, volume 7, 2462–2467.

[Fuhr, 2000] Fuhr, N. 2000. Probabilistic datalog: Imple-
menting logical information retrieval for advanced applica-
tions. Journal of the American Society for Information Sci-
ence 51(2):95–110.

[Habib et al., 2015] Habib, M. B.; Wanders, B.; Flokstra, J.;
and van Keulen, M. 2015. Data uncertainty handling us-
ing evidence combination: a case study on maritime data
reasoning. In Proceedings of the 5th DEXA Workshop on
Information Systems for Situation Awareness and Situation
Management (ISSASiM 2015), Valencia, Spain. USA: IEEE
Computer Society.

[Jampani et al., 2008] Jampani, R.; Xu, F.; Wu, M.; Perez,
L. L.; Jermaine, C.; and Haas, P. J. 2008. MCDB: a monte
carlo approach to managing uncertain data. In Proceed-
ings of the 2008 ACM SIGMOD international conference on
Management of data, 687–700. ACM.

[Kimmig et al., 2008] Kimmig, A.; Costa, V. S.; Rocha, R.;
Demoen, B.; and De Raedt, L. 2008. On the efficient execu-
tion of problog programs. In Logic Programming. Springer.
175–189.

[Koch and Olteanu, 2008] Koch, C., and Olteanu, D. 2008.
Conditioning probabilistic databases. Proceedings of the
VLDB Endowment 1(1):313–325.

[Koch, 2009] Koch, C. 2009. Maybms: A system for man-
aging large uncertain and probabilistic databases. Managing
and Mining Uncertain Data 149.

[Muggleton, 1996] Muggleton, S. 1996. Stochastic logic
programs. Advances in inductive logic programming
32:254–264.

[Poole, 1993] Poole, D. 1993. Probabilistic horn abduction
and bayesian networks. Artificial Intelligence 64(1):81 –
129.

https://github.com/utdb/judged

[Richardson and Domingos, 2006] Richardson, M., and
Domingos, P. 2006. Markov logic networks. Machine
learning 62(1-2):107–136.

[Sato and Kameya, 2001] Sato, T., and Kameya, Y. 2001.
Parameter learning of logic programs for symbolic-
statistical modeling. Journal of Artificial Intelligence Re-
search 391–454.

[van Keulen, 2012] van Keulen, M. 2012. Managing uncer-
tainty: The road towards better data interoperability. J. IT -
Information Technology 54(3):138–146.

[Wanders and van Keulen, 2015] Wanders, B., and van
Keulen, M. 2015. Revisiting the formal foundation of prob-
abilistic databases. In Proceedings of the 2015 Conference
of the International Fuzzy Systems Association and the
European Society for Fuzzy Logic and Technology. Atlantis
Press.

[Widom, 2004] Widom, J. 2004. Trio: A system for inte-
grated management of data, accuracy, and lineage. Techni-
cal Report 2004-40, Stanford InfoLab.

	Introduction
	Example: Maritime Evidence Combination
	Formal Basis
	Probabilistic Datalog
	Implementation
	Monte Carlo Approximation
	Exact Solver

	Related Work
	Future Work
	Conclusions

